Profile
Michael Nolan
We are keeping the science going during this time
-
About Me:
I am lucky to be a scientist and do the work that excites me. I am also luck to be able to help others in their journey to being scientists. And I get paid for it!
-
My Work:
Using large computers we answer some questions: (1)can we make hydrogen from water (2) use wasted co2 to make fuels (3) produce verrrrrry thin structures (1 atom thick) to make faster electronics.
-
Read more
My primary interest is in applying simulation tools to materials, in particular in the following research themes:
Metal Oxides in Renewable Energy Applications. We have had Science Foundation Ireland support in Renewable Energy Applications, in which we investigate metal oxide heterostructures composed of a nanscale metal oxide cluster adsorbed on TiO2 surfaces (rutile and anatase). A number of heterostructures have been investigated, among which TiO2 clusters adsorbed at rutile (110), FeOx clusters also adsorbed at rutile (110) and CrOx clusters adsorbed at rutile (110) show reduced band gaps compared with pure TiO2, which will induce visible light absorption. The heterostructure also allows for charge separation upon light excitation, thus making these structures potential visible light active photocatalysts. A recent collaboration with Prof. H. Tada in Japan, who synthesises these systems, shows excellent agreement between the calculations and the experiments.
Electronic Structure of metal oxides. Since 2003, we have been applying DFT to the study of the electronic structure of reducible metal oxides, primarily cerium dioxide and titanium dioxide. For ceria, we provided the first consistent description of the reduced surfaces (in which an oxygen vacancy is present) whereby reduced Ce3+ ions are formed, which are notoriously difficult to treat with standard DFT approaches. The dependence of the reactivity on surface structure, as measured by the oxygen vacnacy formation energy, has been investigated. We have also presented a number of studies in recent years on the eletronic structure of doped ceria (in which Ce ions are substituted for another metal cation, e.g. Ti, La or Pd) and investigated the effect of this on the reactivity of ceria.
Catalysis on metal oxides. For ceria, we have explored the adsorption of small molecules such as CO and NO2 at oxidised and reduced ceria surfaces, both undoped and doped. Our work on the adsorption of both molecules at different ceria sufaces clarified for the first time a number of important points, including (i) the effect of surface structure on reactivity: CO only physisobrs at the (111 )surface, both chemisorbs, forming a carbonate, at the (110) and (100) surfaces, (ii) once Ce3+ ions are present, NO2 will react strongly, with charge transfer from the reduced surface to the molecule, with dissociates, (iii) doping othe surface, especially (111), can be used to enhance CO oxidation, buth without harming NO2 reduction.
-
My Typical Day:
My typical day involves working on simulations, writing papers and preparing presentations. Discussions with colleagues all over the world are a highlight.
-
Read more
My typical day involves
setting up, checking and analysing results of simulations.
I have to decide if the results are meaningful.
I write papers describing this research
I prepare and give presentations to inform other people
I particularly like discussions of my work with colleagues all over the world.
I wrote proposals to secure funding to allow this work to be done
The best part: travelling abroad to present my work and meeting colleagues. -
What I'd do with the prize money:
1. Buy a leather jacket with tweed patches…no, wait…. 2. Use the remaining funds to pay for visits to schools.
-
Read more
Every scientist needs a leather jacket with tweed patches, or is that a tweed jacket with leather patches…especially if you are visiting schools and want to be taken seriously.
I would use the funds to pay for visits (and associated materials) to schools that would be interested in hearing more about what scientists do
-
Education:
Colaiste Phadraig, Lucan, Co. Dublin 1988 – 1993. Dublin City University, Dublin 1993 – 1997. University of Leipzig, Germany, 1995 – 1996, University College Cork 1997 – 2003
-
Qualifications:
BSc. Chemistry with German, MEngSc Electronic Engineering, PhD Microelectronic Engineering
-
Work History:
I have worked at (1) University of Leipzig, Germany and (2) Trinity College Dublin
-
Current Job:
Senior Researcher (Tyndall Institute) and Professor of Nanomaterials Modelling (Ulster)
-
My Interview
-
How would you describe yourself in 3 words?
Motivated, versatile, hard-working
What was your favourite subject at school?
Chemistry and Maths
What did you want to be after you left school?
An organic chemist!
Were you ever in trouble at school?
Yes, for only getting 99% in an exam
Who is your favourite singer or band?
Iron Maiden
What's your favourite food?
Fish
What is the most fun thing you've done?
Travel the Rocky Mountains
If you had 3 wishes for yourself what would they be? - be honest!
1. To discover the material that can turn carbon dioxide into useful chemicals 2. To travel to the south pole
Tell us a joke.
A man walks into a bar… Ouch!
-